Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 108(32): 13095-9, 2011 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-21788478

RESUMO

Helicobacter mustelae, a gastric pathogen of ferrets, synthesizes a distinct iron-dependent urease in addition to its archetypical nickel-containing enzyme. The iron-urease is oxygen-labile, with the inactive protein exhibiting a methemerythrin-like electronic spectrum. Significantly, incubation of the oxidized protein with dithionite under anaerobic conditions leads to restoration of activity and bleaching of the spectrum. Structural analysis of the oxidized species reveals a dinuclear iron metallocenter bridged by a lysine carbamate, closely resembling the traditional nickel-urease active site. Although the iron-urease is less active than the nickel-enzyme, its activity allows H. mustelae to survive the carnivore's low-nickel gastric environment.


Assuntos
Helicobacter mustelae/enzimologia , Ferro/metabolismo , Urease/metabolismo , Absorção/efeitos dos fármacos , Cristalografia por Raios X , Meios de Cultura/farmacologia , Elétrons , Helicobacter mustelae/efeitos dos fármacos , Íons , Cinética , Modelos Moleculares , Níquel/metabolismo , Oxigênio/metabolismo , Análise Espectral , Urease/química , Urease/isolamento & purificação
2.
Environ Microbiol ; 10(10): 2586-97, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18564183

RESUMO

The acidic gastric environment of mammals can be chronically colonized by pathogenic Helicobacter species, which use the nickel-dependent urea-degrading enzyme urease to confer acid resistance. Nickel availability in the mammal host is low, being mostly restricted to vegetarian dietary sources, and thus Helicobacter species colonizing carnivores may be subjected to episodes of nickel deficiency and associated acid sensitivity. The aim of this study was to investigate how these Helicobacter species have adapted to the nickel-restricted diet of their carnivorous host. Three carnivore-colonizing Helicobacter species express a second functional urea-degrading urease enzyme (UreA2B2), which functions as adaptation to nickel deficiency. UreA2B2 was not detected in seven other Helicobacter species, and is in Helicobacter mustelae only expressed in nickel-restricted conditions, and its expression was higher in iron-rich conditions. In contrast to the standard urease UreAB, UreA2B2 does not require activation by urease or hydrogenase accessory proteins, which mediate nickel incorporation into these enzymes. Activity of either UreAB or UreA2B2 urease allowed survival of a severe acid shock in the presence of urea, demonstrating a functional role for UreA2B2 in acid resistance. Pathogens often express colonization factors which are adapted to their host. The UreA2B2 urease could represent an example of pathogen adaptation to the specifics of the diet of their carnivorous host, rather than to the host itself.


Assuntos
Helicobacter mustelae/enzimologia , Níquel/metabolismo , Urease/biossíntese , Ácidos/farmacologia , Animais , Antibacterianos/farmacologia , Indução Enzimática , Perfilação da Expressão Gênica , Ordem dos Genes , Helicobacter mustelae/efeitos dos fármacos , Viabilidade Microbiana , Óperon
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...